

Department of Physics, IIT-Kanpur

Time: 2 hrs. PhD Admission Test Dec 2017 Total Marks: 70

Question 1

(A) Consider a particle in an infinite potential well [the potential V(x) = 0 for 0 < x < L, otherwise $V(x) = \infty$]. The quantum system is described by the energy eigenvalues E_n and the corresponding normalized eigenstates $\phi_n(x)$ with $n = 1, 2, 3, \ldots$

At time t = 0, a particle in the infinite well is in the state given by

$$\psi(x,0) = \sqrt{\frac{1}{3}}\phi_1(x) + \sqrt{\frac{1}{6}}\phi_2(x) + \sqrt{\frac{1}{2}}\phi_3(x) .$$

(a) Write down the expression for $\psi(x,t)$

[1 mark]

- (b) Calculate the expectation value of the energy for the particle described by $\psi(x,t)$. Write your answer in terms of E_1 . [3 marks]
- (B) Consider a spherically symmetric rigid rotor with moment of inertia $I_x = I_y = I_z = I_o$. Its Hamiltonian is given by

$$H = \frac{L^2}{2I_o}$$

with $L = r \times p$ is the orbital angular momentum operator.

- (a) What are the energy eigenstates and eigenvalues for this quantum rigid rotor? [1 mark]
- (b) Now suppose the moment of inertia in the z-direction becomes $I_z = (1 + \varepsilon) I_o$, where ($\varepsilon << 1$) and with the other two moments unchanged i.e $I_x = I_y = I_o$. What are the new energy eigenstates and eigenvalues? [5 marks]

Question 2

A neutral spherical ball with radius R and dielectric permittivity ε_2 is kept inside an infinite dielectric media with permittivity ε_1 . The whole system is placed in an electric field which is uniform far away from the sphere and is given by $\vec{E} = E_0 \ \hat{z}$. After solving the Laplace's equation in spherical coordinates, the following solutions are obtained for the potential:

$$V(r \le R) = -\frac{3\varepsilon_1}{\varepsilon_2 + 2\varepsilon_1} E_0 r \cos\theta,$$

$$V(r \ge R) = -E_0 r \cos\theta + \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_2 + 2\varepsilon_1} \frac{R^3}{r^2} E_0 \cos\theta ,$$

where θ is the angle the position vector r makes with the direction of the external electric field and all the other symbols have their usual meaning.

Using the above information,

(a) Find out the electric field inside a spherical cavity of radius R which is hollowed out from an infinite dielectric media of permittivity ε . The whole system is placed in an electric field which is uniform far away from the sphere and is given by $E = E_0 \hat{z}$. Comment on the magnitude and direction of the electric field with respect to the external field.

[3 marks]

- (b) Find out the electric field outside the spherical cavity but inside the dielectric media. [3 marks]
- (c) Plot the magnitude of electric field along the z-axis. [2 marks]
- (d) Sketch the electric field lines. [2 marks]

Assume isotropic, linear and homogeneous dielectrics.

Question 3

(A) The rate of a particular chemical reaction $A + B \rightarrow C$ is proportional to the concentrations of the reactants A and B. Given that C(t=0)=0, and

 $dC(t)/dt = \alpha [A(0) - C(t)] [B(0) - C(t)]$, where α is a constant.

- (a) Find C(t) for $A(0) \neq B(0)$. [4 marks]
- (b) Find C(t) for A(0) = B(0). [3 marks]
- (B) Given that m is an integer, and $f(z) = z^m$, calculate the contour integral of f(z) over a unit circle, with origin at z = 0. [3 marks]

Question 4

(A) A particle of mass m is constrained to move on a curve in the vertical plane defined by the parametric equation: $x = l(2\phi + \sin 2\phi)$; $y = l(1 - \cos 2\phi)$. There is the usual constant gravitational force acting in the vertical y direction.

2

- (a) Calculate the Hamiltonian of the system. Is the Hamiltonian conserved? Is the energy of the system conserved? For each case give proper justification to your answer. [3 marks]
- (b) Calculate the action integral for the system.

[4 marks]

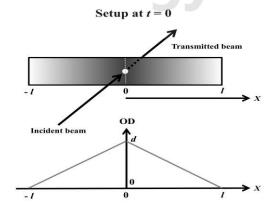
(B) Three equal mass points (mass 10 g) are located at (a, 0, 0); (0, a, 2a); and (0, 2a, a). Obtain the principal moments of inertia of the system. Take a = 2 cm. [3 marks]

Question 5

(A) A digital stopwatch can read at a precision of 1/10 of a second. However, the display of the watch is damaged and the tens' place of second is not readable (the display looks like: 00:00:X0.0). Where "X" represents the tens place of a second which is not readable. What is the effective measurement precision of this digital stopwatch? Explain your answer briefly.

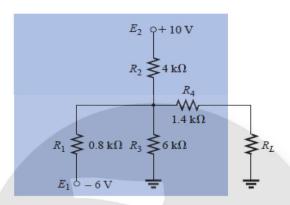
[2 marks]

- (B) Random measurement uncertainties are inevitably introduced in any measurement and are propagated to the processed data. The time period (T) of a pendulum is measured in two different ways. In one experiment the total time for 50 oscillations (T_{50}) is measured and the time period is calculated as $T = (T_{50} / 50)$. In another experiment, time for each complete oscillation (T_1) is measured 50 times and the time period is calculated by taking mean, *i.e.* $T = (<T_1>_{50})$. Compare the propagated uncertainties in these two cases and thus conclude which between the two, statistically, gives more accurate value for the time period? [3 marks]
- (C) When a light beam of intensity I_0 passes through a neutral density (ND) filter, the intensity of the transmitted light (I_t) gets reduced by a factor $10^{-\eta}$ i.e. $I_t = I_0 \ 10^{-\eta}$, where η is the optical density of the filter. In an experiment a rectangular ND filter (length = 2I) is used, where η changes linearly from a maximum value of d at the center to 0 at both ends ($\pm I$) along its length (see figure below). A laser beam is passed through the middle of this ND filter. Now, if the ND filter starts performing simple harmonic motion along the length with time period T and amplitude T. Derive the transmitted intensity of the laser beam as a function of time. What is the time period of oscillation in the transmitted intensity? Does it oscillate in a simple harmonic manner? What is the minimum time that it needs to be averaged over to calculate the time averaged transmitted intensity?



Question 6

(A) Find the Thevenin equivalent circuit (across R_L) for the following network: [5 marks]



- (B) Draw the circuit diagram for negative feedback amplifiers of following specifications using an ideal Op-Amp (IC-741). Each circuit must contain three (and only three) $10 \text{ k}\Omega$ resistors. [5 marks]
 - (a) $A_{v(CL)} = -2$ and $R_I = 10 \text{ k}\Omega$.
 - (b) $A_{v(CL)} = -2$ and $R_1 = 5 k\Omega$.
 - (c) $A_{v(CL)} = -0.5$ and $R_I = 10 \text{ k}\Omega$.
 - (d) $A_{v(CL)} = +3$
 - (e) $A_{v(CL)} = +3$ and $R_F = 10 \text{ k}\Omega$.

Here, A_{V(CL)} is the closed loop gain. R_I is the input resistor and R_F is the feedback resistor.

Question 7

Consider a system of six distinguishable, non-interacting spins. Each spin can only occupy two states: 'up' and 'down'. For the first five spins, the energy levels are $-\varepsilon$ for an up spin and $+\varepsilon$ for down spin. However, the sixth spin has twice the magnetic moment and, therefore, it's energy levels are -2ε and $+2\varepsilon$. If the total energy is -3ε , calculate (a) the entropy and (b) the average number of up spins. [7marks + 3 marks]

$$\frac{\epsilon}{-\epsilon} - - - - \frac{\overline{2\epsilon}}{\overline{0}} down$$

$$\frac{-\epsilon}{\overline{0}} - - - - - - - \underline{0}$$

$$\frac{-2\epsilon}{\overline{0}} down$$

Useful formulae (In spherical coordinates):

$$Gradient: \qquad \nabla t = \frac{\partial t}{\partial r} \, \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial t}{\partial \theta} \, \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \, \hat{\boldsymbol{\phi}} \qquad \text{Divergence: } \nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \, v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} \, \hat{\boldsymbol{\phi}} + \frac{1}{r \sin \theta} \frac{\partial$$

$$Curl: \qquad \nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta \ v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\mathbf{r}} \ + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi} - \frac{\partial}{\partial r} (r v_{\phi}) \right] \hat{\boldsymbol{\theta}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r v_{\theta}) - \frac{\partial v_{r}}{\partial \theta} \right] \hat{\boldsymbol{\phi}}$$

Zero Vigyan

5

